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Abstract

An analysis is performed for flow and heat transfer of a steady laminar boundary-layer flow of an electrically conducting fluid of
second grade subject to suction and to a transverse uniform magnetic field past a semi-infinite stretching sheet. The governing partial
differential equations are converted into ordinary differential equations by a similarity transformation and an analytical solution for this
flow is utilized. The effects of viscous dissipation and work due to deformation are considered in the energy equation and the variations
of dimensionless surface temperature and dimensionless surface temperature gradient with various parameters are graphed and tabu-
lated. Two cases are studied, namely, (i) the sheet with constant surface temperature (CST case) and (ii) the sheet with prescribed surface
temperature (PST case).
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Boundary layer behaviour over a moving continuous
solid surface is an important type of flow occurring in sev-
eral engineering processes. Since the pioneering work of
Sakiadis [1,2], various aspects of the problem have been
investigated by many authors. Crane [3], Vleggaar [4] and
Gupta and Gupta [5] have analyzed the stretching problem
with constant surface temperature while Soundalgekar and
Ramana Murty [6] investigated the constant surface veloc-
ity case with power-law temperature variation. This flow
was examined by Siddappa and Khapate [7] for a special
class of non-Newtonian fluids known as second-order flu-
ids which are viscoelastic in nature.

Rajagopal et al. [8] independently examined the same
flow as in [7] and obtained similarity solutions of the
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boundary layer equations numerically for the case of small
viscoelastic parameter k1. It is shown that skin-friction
decreases with increase in k1. Dandapat and Gupta [9]
examined the same problem with heat transfer. In [9], an
exact analytical solution of the non-linear equation govern-
ing this self-similar flow which is consistent with the
numerical results in [8] is given and the solutions for the
temperature for various values of k1 are presented. Later,
Cortell [10] extended the work of Dandapat and Gupta
[9] to study the heat transfer in an incompressible second-
order fluid caused by a stretching sheet with a view to
examining the influence of the viscoelastic parameter on
temperature distributions. It is found that temperature dis-
tribution depends on k1, in accordance with the results in
[9]. Numerical solutions for the flow of a fluid of grade
three past an infinite porous flat plate subject to suction
at the plate are to be found in Rajagopal et al. [11] and
in Cortell [12]. Hayat et al. [13] studied the flow of a
third-grade fluid over a wall with suction or blowing and
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Gupta et al. [14] investigated the steady flow of a power-
law fluid past an infinite porous flat plate subject to suction
or blowing with heat transfer. Arbitrary injection/suction
in a power-law fluid is analyzed in [15]. Flow and heat
transfer characteristics were investigated in [16] for a visco-
elastic fluid over a stretching sheet with power-law surface
temperature and in [17] with a non-linearly stretching
sheet. Very recently, Vajravelu and Rollings [18] assumed
additional effects such as the flow in an electrically con-
ducting fluid permeated by a transverse uniform magnetic
field with uniform suction at the surface, however, heat
transfer in such flow was not studied.

Furthermore, they augmented the missing boundary
condition and used a proper sign for the normal stress
modulus (i.e. a1 P 0). In the present paper the same model
as in [18] is used and we investigate both momentum trans-
fer and heat transfer boundary-layer problems. The fluid is
at rest and the motion is created by the surface whose
velocity varies linearly with the distance x from a fixed
point and the sheet is held at a temperature Tw(x) higher
than the temperature T1 of the ambient fluid. Further,
an exact analytical solution of the above-mentioned flow
is utilized.

In Section 2, we shall consider the mathematical analysis
of the flow and some exact solutions; and in Section 3 we
shall examine the thermal problem when both dissipative
heat and work due to deformation are included in the
energy equation; furthermore, the influence on the numer-
ical results of these additional effects will also be discussed.

2. Flow analysis

An incompressible homogeneous second grade fluid has
a constitutive equation given by [19]

T ¼ �pIþ lA1 þ a1A2 þ a2A2
1. ð1Þ

Here T is the stress tensor, p the pressure, l the coefficient
of viscosity, a1, a2 are material constants and A1 and A2 are
defined as

A1 ¼ ðgradvÞ þ ðgrad vÞT; ð2Þ
A2 ¼ d=dtA1 þ A1 � gradvþ ðgradvÞT � A1. ð3Þ

Here v denotes the velocity field and d/dt is the material
time derivative. Some assumptions concerning the sign of
a1 in the model (1) will be necessary. For thermodynamic
reasons (see [20]), the material parameter a1 must be posi-
tive. Furthermore, a thorough discussion of these issues
can be found in the critical review of Dunn and Rajagopal
[21]. We do not intend to discuss here the sign of a1, but to
study per se the influence of the viscoelastic parameter k1,
the magnetic parameter M and the suction parameter R

on flow, heat-transfer characteristics and temperature
distributions. In our analysis we assume that the fluid is
thermodynamically compatible. Let us suppose a steady,
laminar and two-dimensional flow of an incompressible,
electrically conducting second grade fluid subject to trans-
verse magnetic field past a flat sheet coinciding with the
plane y = 0 and the flow being confined to y > 0. Two equal
and opposite forces are introduced along the x-axis so that
the surface is stretched keeping the origin fixed. We take x-
axis along the surface, the y-axis being normal to it and u

and v are the fluid tangential velocity and normal velocity,
respectively. Thus, for the problem under consideration
the equations of the laminar boundary layer are
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where m is the kinematic viscosity, q is the density, r0 is the
electric conductivity, B0 is the uniform magnetic field along
the y-axis and a1 is the material constant.

The boundary conditions for the velocity field are

u ¼ cx; v ¼ �v0 at y ¼ 0; c > 0; ð6Þ

u! 0;
ou
oy
! 0 as y !1; ð7Þ

where c is the stretching rate.
Defining new variables

u ¼ cxf 0ðgÞ; v ¼ �ðc � mÞ1=2f ðgÞ ð8Þ
where

g ¼ c
m

� �1=2

y. ð9Þ

With these changes of variables, Eq. (4) is identically satis-
fied and substituting in (5) gives

ðf 0Þ2 � ff 00 þMf 0 ¼ f 000 þ k1b2f 0f 000 � ðf 00Þ2 � ff ivc; ð10Þ
with boundary conditions

f 0 ¼ 1; f ¼ R at g ¼ 0; ð11Þ
f 0 ! 0; f 00 ! 0 as g!1. ð12Þ

Here prime denotes differentiation with respect to g,

k1 ¼ a1c
qm is the viscoelastic parameter, M ¼ r0B2

0

qc is the mag-
netic parameter and R ¼ v0

ðcmÞ1=2 is the suction parameter.

It is interesting to note that the problem (10)–(12) has a
solution of the form [18]

f ðgÞ ¼ Rþ 1� expð�bgÞ
b

; ð13Þ

where b(>0) satisfies the following cubic equation:

k1Rb3 þ ð1þ k1Þb2 � Rb�M � 1 ¼ 0; ð14Þ
for arbitrary and positive values of R, k1 and M.

Thus, from (13) and (14), we get a simple exact analyti-
cal solution of the problem (10)–(12) and we use in heat
transfer analysis this solution for the function f.

For details about Eq. (14), the reader is referred to Ref.
[18]. A detailed discussion regarding to get some idea of
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how b depends on the parameters R, k1 and M was carried
out in that paper by using perturbation techniques. For
small R and k1 explicit expressions for b can be found, how-
ever, for arbitrary values of R, k1 and M it is best to find
the value of b numerically [18].

The velocity components are

u ¼ cx expð�bgÞ;

v ¼ �ðcmÞ1=2 Rþ 1� expð�bgÞ
b

� �
. ð15Þ

On the other hand, we obtain from (13) that the skin fric-
tion parameter �f00(0) is equal to b. The shear stress at a
point on the surface is

s0 ¼ �l
ou
oy

� �
y¼0

¼ lxbc

ffiffiffi
c
m

r
; ð16Þ

where l is the viscosity. The non-dimensional form of the
shear stress is

s ¼ s0

c2x2q
ð17Þ

and we obtain from (16)

s ¼ b
x

ffiffiffi
m
c

r
. ð18Þ

From Eq. (8) it can be seen that the horizontal velocity pro-
files are related with f 0(g) = exp(�bg). It is observed from
this equation that the velocity component u decreases in
the boundary layer with increase of g. Further, the effects
on both skin-friction parameter b and shear stress in the
boundary of the parameters M, R and k1 can be analyzed
from Eqs. (14)–(18).

3. Heat transfer analysis

By using boundary layer approximations, and taking into
account both viscous dissipation and work due to deforma-
tion the equation of energy for temperature T is given by
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where a is the thermal diffusivity and cP is the specific heat
of a fluid at constant pressure.

3.1. Constant surface temperature (CST case)

In this circumstance, the boundary conditions are

T ¼ T w at y ¼ 0; T ! T1 as y !1; ð20Þ
where Tw and T1 are constants.

Defining the non-dimensional temperature h(g) and the
Prandtl number r as

hðgÞ ¼ T � T1
T w � T1

; r ¼ m
a

ð21Þ
and using (8) and (9), we find from (19)

h00 þ rf h0 ¼ �rEcbðf 00Þ2 þ k1f 00ðf 0f 00 � ff 000Þc ð22Þ
with the boundary conditions

hð0Þ ¼ 1; hð1Þ ! 0. ð23Þ
Here, Ec ¼ b2x2

cP ðT w�T1Þ represents the appropriate form of the

Eckert number for this problem (see [10]). It is worth men-
tioning that the x-coordinate can not be eliminated from
Eq. (22), whereby, the temperature profiles always depend
on x. It is clear from Eq. (22) that its right-hand side van-
ishes in the absence of all the effects and that all solutions
are then of the similar type. When those effects are ne-
glected, we obtain the simpler equation

h00 þ rf h0 ¼ 0. ð24Þ
Using numerical methods of integration and disregard-

ing temporarily the second condition (23), a family of solu-
tions of (24) can be obtained for arbitrarily chosen values

of dh
dg

� �
g¼0
¼ h0ð0Þ 6 0. Tentatively we assume that a special

value of jh 0(0)j yields a solution for which h vanishes at a
certain g = g1 and satisfies the additional condition

dh
dg
¼ 0; h ¼ 0 at g ¼ g1. ð25Þ

We guess h 0(0) and integrate Eq. (24) and first condition
(23) as an initial value problem by the Runge–Kutta method
of fourth order with the additional condition (25). In the
present study, the equivalent step size Dg = 0.02 is used to
obtain the numerical solution. It is worth mentioning that,
for each numerical solution, the g1 value depends on the
non-dimensional parameters M, R, k1, r and Ec. We follow
an iterative procedure which is stopped to give the tempera-
ture and temperature-gradient distributions when (25) is
reached and the error in the value of jh 0(0)j becomes less than
10�4. We have also studied the effect of the step size Dg on
some numerical solutions and for 0.01 < Dg < 0.02 the
results here are independent of Dg almost up to the fourth
decimal place. In this manner, problem (24) and (23) was
solved. The results of the numerical solutions for various
values of k1 with r = 0.7, M = 1 and R = 5 are shown in
Table 1. It is seen from Table 1 that for a given position g,
h(g) decreases as the viscoelastic parameter k1 increases.

On the other hand, Fig. 1 shows the effect of Prandtl
number r on temperature and temperature-gradient pro-
files. Fig. 1 indicates that for a given location g, h(g)
decreases as the r increases, resulting in a decrease of the
thermal boundary layer thickness.

3.2. Prescribed surface temperature (PST case)

Here, the boundary conditions are

T ¼ T wð¼ T1 þ A � xsÞ at y ¼ 0;

T ! T1 as y !1;
ð26Þ

where s is the wall temperature parameter.



Table 1
Values of h(g) and h 0(g) in the CST case with r = 0.7; M = 1 and R = 5

R M r k1 b g h �h 0

5 1 0.7 0.1 2.480883 0.0 1.0 3.613778
0.1 0.695396 2.538390
0.2 0.482013 1.773252
0.5 0.158438 0.591277
1.0 0.024291 0.091342
2.0 0.000604 0.002098
4.0 4.93 · 10�5 1.1 · 10�6

0.5 1.339356 0.0 1.0 3.638282
0.1 0.693339 2.555291
0.2 0.478596 1.783699
0.5 0.154073 0.589009
1.0 0.022206 0.086890
2.0 0.000462 0.001678
4.0 4.2 · 10�5 0.6 · 10�6

1.7 0.794896 0.0 1.0 3.653577
0.1 0.692054 2.565879
0.2 0.476453 1.790379
0.5 0.151255 0.587871
1.0 0.020790 0.083965
2.0 0.000373 0.001383
4.0 4.6 · 10�5 0.3 · 10�6

Fig. 1. Temperature and temperature-gradient profiles in the CST case for
several values of r with R = 5; M = 1 and k1 = 1.7 (r values are indicated
on the curves).

Table 2
Values of h(g) and h 0(g) in the PST case with r = 0.7; M = 1 and R = 5

Ec R M r k1 b g h �h 0

0 5 1 0.7 0.1 2.480883 0.0 1.0 3.833174
0.1 0.681989 2.606685
0.2 0.465567 1.775401
0.5 0.148725 0.564589
1.0 0.022386 0.084589
2.0 0.000555 0.001921
4.0 4.78 · 10�5 1.0 · 10�6

0.7 1.163810 0.0 1.0 3.910973
0.1 0.675641 2.655720
0.2 0.455638 1.799041
0.5 0.138435 0.552529
1.0 0.018596 0.074987
2.0 0.000353 0.001230
4.0 3.5 · 10�5 0.2 · 10�6

1.7 0.794896 0.0 1.0 3.937998
0.1 0.673423 2.673074
0.2 0.452126 1.807886
0.5 0.134641 0.548574
1.0 0.017159 0.071300
2.0 0.000325 0.001053
4.0 8.5 · 10�5 1.2 · 10�6
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Using Eqs. (8) and (9), (19) and conditions (26) can be
written as

h00 þ rf h0 � srf 0h ¼ �rEcx2�s � bðf 00Þ2 þ k1f 00ðf 0f 00 � ff 000Þc;
ð27Þ

hð0Þ ¼ 1; hð1Þ ! 0; ð28Þ

where Ec = c2/AcP.
If s = 2, we find from (27)

h00 þ rf h0 � 2rf 0h ¼ �rEcbðf 00Þ2 þ k1f 00ðf 0f 00 � ff 000Þc.
ð29Þ

It is clear from Eq. (29) that all solutions are then of
the similar type. If we do not take into account neither
the viscous dissipation nor heat due to elastic deformation,
we obtain from (29) the simpler equation

h00 þ rf h0 � 2rf 0h ¼ 0. ð30Þ
On the other hand, for negligible effects, we find from Eq.
(27)

h00 þ rf h0 � srf 0h ¼ 0; ð31Þ
where s is now arbitrary.

The problem (30) and (28) was solved for several values
of k1 with r = 0.7, R = 5 and M = 1. The computational
results are listed in Table 2. It can be seen from Table 2 that
the temperature at a point decreases with the viscoelastic
parameter k1.

If the effects of viscous dissipation and work due to
deformation are considered, we look at the problem (29)
and (28). This problem was also solved for several values
of k1 with r = 0.7, R = 5, M = 1 and Ec = 0.02. The results
are shown in Table 3.

It can be seen from Table 3 that in this case and for a
given position g, h(g) decrease as the viscoelastic parameter
k1 increase.

On the other hand, we present in Table 4 numerical
results for the same last thermal problem, but without con-
sidering the work due to deformation. Obviously, we can
analyze this effect on temperature and temperature-gradi-
ent profiles by comparing numerical results in Tables 3
and 4.

Finally, a selected set of numerical solutions is plotted in
Figs. 2 and 3. For that set of non-dimensional parameters
we can observe that the effect of increasing values of R is to
decrease the temperature distribution, whereas an opposite
behaviour can be seen for the magnetic parameter M.



Table 3
Values of h(g) and h 0(g) in the PST case with r = 0.7; M = 1; R = 5 and
Ec = 0.02 when the work due to deformation is taken into account

Ec R M r k1 b g h �h 0

0.02 5 1 0.7 0.1 2.480883 0.0 1.0 3.814765
0.1 0.683185 2.599881
0.2 0.467122 1.774298
0.5 0.149810 0.566984
1.0 0.022673 0.085391
2.0 0.000603 0.001948
4.0 8.9 · 10�5 1.0 · 10�6

0.7 1.163810 0.0 1.0 3.898615
0.1 0.676552 2.649388
0.2 0.456981 1.796406
0.5 0.139792 0.553891
1.0 0.019211 0.076174
2.0 0.000423 0.001463
4.0 3.4 · 10�5 1.9 · 10�6

1.7 0.794896 0.0 1.0 3.925575
0.1 0.674371 2.666139
0.2 0.453577 1.804491
0.5 0.136294 0.549504
1.0 0.018098 0.072678
2.0 0.000471 0.001410
4.0 1.1 · 10�5 1.5 · 10�5

Table 4
Values of h(g) and h 0(g) in the PST case with r = 0.7; M = 1; R = 5 and
Ec = 0.02 when the work due to deformation is not taken into account

Ec R M r k1 b g h �h 0

0.02 5 1 0.7 0.1 2.480883 0.0 1.0 3.816686
0.1 0.683055 2.600675
0.2 0.466945 1.774523
0.5 0.149652 0.566813
1.0 0.022576 0.085328
2.0 0.000524 0.001946
4.0 1.0 · 10�5 1.0 · 10�6

0.7 1.163810 0.0 1.0 3.903775
0.1 0.676171 2.652046
0.2 0.456418 1.797527
0.5 0.139216 0.553345
1.0 0.018936 0.075690
2.0 0.000370 0.001397
4.0 1.0 · 10�5 1.3 · 10�6

1.7 0.794896 0.0 1.0 3.933468
0.1 0.673768 2.670556
0.2 0.452653 1.806665
0.5 0.135236 0.548916
1.0 0.017485 0.071816
2.0 0.000354 0.001187
4.0 3.0 · 10�5 5.2 · 10�6

Fig. 2. Temperature and temperature-gradient profiles in the PST case for
several values of R when M = 2; k1 = 1; r = 3 and Ec = 0.05.

Fig. 3. Temperature and temperature-gradient profiles in the PST case for
several values of M when R = 5; k1 = 1; r = 1 and Ec = 0.3.
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4. Discussions and conclusions

The flow and heat transfer in a laminar flow of an
incompressible and electrically conducting second grade
fluid subject to suction and to a transverse uniform mag-
netic field past a stretching sheet have been examined.
The energy equation includes both the viscous dissipation
and work due to deformation. A parameter of interest
for the present study is the viscoelastic parameter k1 which
is related to a1. The values of f 0 and f are related to the
velocity components u and v through Eqs. (14) and (15).
From these equations it can be studied the behaviour of
u and v with changes in k1. The equations for the heat
transfer analysis were solved by the Runge–Kutta method
of fourth order and two different cases have been analyzed:

Case 1 Constant surface temperature (CST case). It is
seen from Table 1 that for R = 5; M = 1; r = 0.7 and for
a given position g, h(g) decreases as the viscoelastic param-
eter k1 increases and the dimensionless heat transfer coeffi-
cient [�h 0(0)] increases with increase in k1.

Case 2 Prescribed surface temperature (PST case). Simi-
larity solutions can be obtained in this case and our study
includes both viscous dissipation and work due to defor-
mation. Furthermore, the effect on both temperature and
temperature-gradient profiles when the contribution of
heat due to elastic deformation is taken into account in
the energy equation can be analyzed by comparing numer-
ical results given in Tables 3 and 4. Note that in these
Tables we use the same values of M, R, k1, r and Ec.

It is concluded from the analysis that, in general, the
combined effect of increasing values of k1, r and R is to
increase the numerical value of wall temperature gradient
jh 0(0)j; consequently, more heat is carried out of the sheet,



1856 R. Cortell / International Journal of Heat and Mass Transfer 49 (2006) 1851–1856
resulting in a decrease of the thermal boundary layer thick-
ness and hence increasing the heat transfer rate, whereas an
opposite behaviour can be found for Ec and M. Also, the
presence of the work done by deformation’s effect in the
energy equation yields an augment in the fluid’s
temperature.
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